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1. Important Notice 

We kindly request your attention to the following important notice. It is advisable to carefully 
review this section. Should you have any inquiries regarding the necessary actions to be taken, we 
recommend consulting with your legal, financial, tax, or other suitable professional advisor(s). 

It is imperative to note that the information provided in this whitepaper is subject to potential 
adjustments or updates and should not be interpreted as an assurance, commitment, promise, or 
guarantee by LOCUS CHAIN or any entity or individual referred to in this document regarding the 
anticipated availability of services related to token usage, or the future value or performance of 
tokens. 

This whitepaper does not aim to solicit or advise the sale of stocks or securities and should not 
be utilized as the basis for any agreements or commitments. It is not an offer to sell, subscribe to, 
or purchase any securities. Locus Chain explicitly disclaims responsibility for any direct or 
consequential losses or damages incurred directly or indirectly due to reliance on, or any errors, 
omissions, or inaccuracies within, the information presented in this whitepaper, or any subsequent 
actions taken as a result. 

It is essential to emphasize that this whitepaper is not designed for the purpose of soliciting 
purchases or providing financial guidance; it is meant solely for informational purposes. Under no 
circumstances should trading or investing in assets such as tokens, coins, or company stocks be 
based solely on the provided information. As with all investments, there exists a risk of price 
fluctuations and potential loss of principal. Investors are urged to seek the guidance of professional 
financial, legal, and tax advisors to conduct their own research or due diligence concerning the 
topics or issues outlined in this whitepaper before making any investment decisions. 

The contents of this document are compiled from sources believed to be reliable and accurate. 
While market prices, data, and other information are not guaranteed to be complete or accurate, 
they are derived from selected public market data, reflect current conditions and our perspectives 
as of the current date, and thus are subject to possible modifications without prior notice. 

It is noteworthy that this document may encompass or reference forward-looking statements, 
which entails statements that do not constitute historical facts. No representations or warranties are 
offered regarding the accuracy of such forward-looking statements. Any projections, forecasts, and 
estimates included in this document are inherently speculative and are contingent upon certain 
assumptions. It is essential to acknowledge that these forward-looking statements may prove 
inaccurate and can be influenced by flawed assumptions, as well as known or unknown risks, 
uncertainties, and other factors, most of which may be beyond our control. It is foreseeable that 
some or all of these forward-looking assumptions may not materialize, or may differ significantly 
from actual outcomes. 
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2. Introduction 

A. Locus Chain Business Overview 
Locus Chain is a public distributed ledger protocol facilitating tamper-proof communication across 

multiple parties with exceptional efficiency, characterized by large-scale capacity, high-speed 

transactions, and low costs. It operates as a public blockchain protocol capable of real-time processing, 

even amidst substantial transaction volumes and growing participation. To achieve this, it integrates 

DAG-AWTC + BFT and Dynamic Sharding, alongside Verifiable Pruning technologies, ensuring the 

ledger's structural integrity, consensus mechanism, and minimizing storage space and network load 

requirements. 

Locus Chain's remarkable scalability and ultra-lightweight nodes empower it to achieve infinitely 

scalable, fully decentralized processing of trust, ownership, and certification for all Internet data, all 

achieved algorithmically without reliance on third-party intervention. As a decentralized technology, 

Locus Chain securely processes authenticated data at high speeds, free from bottlenecks or distortion, 

thus fostering an enhanced data value ecosystem compared to conventional internet services. 

(1) Business Vision 

Our vision entails forging an entirely new dimension within the decentralized (Web3) data 

ecosystem via a vast, scalable public blockchain network known as Locus Chain. Here, data assumes 

intrinsic value and facilitates direct exchange and trade between providers and users across diverse 

applications, catalyzing the emergence of fresh business domains and the realization of a new credit 

society. Leveraging Locus Chain as our foundation, we strive to pioneer a distinctive convergence of 

existing businesses with limited interconnectivity, thereby propelling the evolution of the data 

ecosystem through successive convergence phases. 

(2) Development Philosophy 

From its inception, our objective is to revolutionize the foundation of social credit by fostering broad 

multilateral trust without intermediaries, leveraging the expansive scalability of Locus Chain within a 

highly decentralized network. 

(3) Performance of Locus Chain 

Our goal is to establish a truly public platform where people can engage in ledger writing without 

incurring extra expenses on standard home PCs and network setups. Specifically, the design targets 

CPU occupancy of less than 5%, network bandwidth occupancy within 5% based on 100Mbps, on-device 

ledger size within 10GB, and TPS (Transactions Per Second) of at least 4k. Scalability is limited only by 

network speed since there is no inherent limitation in blockchain processing speed. The processing time 
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per transaction is targeted to range from near-instant to just a few seconds at most. Locus Chain has 

developed and combined the following proprietary technologies to achieve these goals. 

(4) Applications 

Locus Chain's decentralized technology facilitates secure, distortion-free, and high-speed processing 

of authenticated data without the need for servers. It is also possible to transform most existing internet 

services to operate in a decentralized environment. This not only enhances current services but also 

fosters the creation of a new data value ecosystem, paving the way for innovative applications and 

services built upon it. 

By significantly reducing transaction costs for data exchanging, including data with no trading value 

due to its higher cost compared to worth, a decentralized environment provides an innovative economy 

for data exchange.  As a lightweight Add-On protocol capable of concurrently supporting diverse 

applications, it significantly streamlines the creation of decentralized applications and services. In 

particular, by leveraging the verification function of the Locus Chain, data scattered across devices can 

be authenticated solely through the chain, providing a performance and structure suitable for On-

Device services where data security and sovereignty are crucial. 

 

B. Locus Chain Technology Overview 
Locus Chain is a Layer 1 blockchain primarily dedicated to high-speed, high-performance 

transaction recording and consensus functions. 

The processing capabilities of prominent blockchain systems such as Bitcoin and Ethereum typically 

reach around 20 transactions per second (TPS). This translates to approximately 20 individuals being 

able to record information on the blockchain every second. However, when compared to standard real-

world benchmarks, this level of performance falls short. For example, the transaction volume of VISA, 

a global credit card brand, amounts to about 4,000 transactions per second. 

However, attempting to increase the throughput of blockchain systems encounters various technical 

challenges. One significant challenge is the escalation in ledger size and communication volume due to 

the increased amount of data processing. For instance, if Locus Chain were to achieve a throughput akin 

to VISA's 4,000 transactions per second, the daily influx of data would total roughly 350 gigabytes. Such 

an immense volume rapidly depletes the storage capacity of a typical PC's 1TB storage within just three 

days, imposing a notable strain on personal device processing. 

To tackle these impediments in processing speed and capacity, Locus Chain has devised advanced 

technologies for implementing a public distributed ledger protocol with extensive scalability within a 

highly decentralized environment. These technologies encompass DAG AWTC + BFT, Verifiable 
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Pruning, and Dynamic Sharding. As of April 25, 2024, Locus Chain has filed ten domestic and 

international patents, with four patents successfully granted and six patents under review. Additional 

patents for multiple technological advancements are also in the pipeline for filing. However, 

explanations concerning the technologies currently undergoing patent application preparations have 

been omitted from this whitepaper update, as of the publication date. Detailed status updates on Locus 

Chain's domestic and international patent applications and registrations as of May 6, 2024, are 

provided in Annex 1 and Annex 2, respectively. 

(1) Innovation in Ledger System and Consensus Mechanism for Enhanced 

Processing Performance 

Locus Chain has adopted DAG-AWTC to address the speed limitations imposed by consensus 

mechanisms. The removal of these constraints exposes limitations in network bandwidth, necessitating 

the implementation of sharding. Traditional multi-endpoint ledger systems utilizing DAG have 

struggled to integrate BFT Byzantine Fault Tolerance consensus, posing a barrier to scalability through 

sharding. As a foundational technology enabling sharding and pruning, Locus Chain employs a 

consensus mechanism comprising an AWTC ledger system based on Directed Acyclic Graph (DAG) 

information structure and Byzantine Fault Tolerance (BFT) consensus driven by Weighted Proof of 

Stake (PoS). Locus Chain has integrated DAG-AWTC from the early stages of development, envisioning 

Dynamic Sharding and developing a consensus mechanism based on algorithmic technology. The DAG 

+ BFT technology, pioneered by Locus Chain, was patented as of August 1, 2019, marking a significant 

milestone as the world's first in this domain, with the patent application and registration successfully 

completed. 

(2) Enhancing Processing Performance and Ensuring Fairness through 

Sharding 

In the realm of computer technology, sharding emerges as a prominent approach to tackle 

processing capacity limitations. Essentially, sharding involves dividing a large workload into smaller, 

more manageable partitions for efficient processing. While extensively researched and applied in 

established fields like databases and networks, its adoption in the blockchain domain remains relatively 

uncommon. 

Locus Chain addresses the challenge of processing scalability through dynamic sharding 

technology, which automatically partitions the ledger and network into fair segments based on 

processing capacity. 

Each shard within Locus Chain is designed to handle a comparable volume of transactions. Should 

transactions become concentrated within a single shard, the system redistributes the workload 

equitably across other shards through shard reorganization. Consequently, participants in Locus Chain 
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can earn mining rewards proportionate to the fair processing burden, regardless of which shard they 

participate in or what transactions they handle. 

Through Dynamic Sharding, Locus Chain achieves scalability by partitioning the blockchain network 

into multiple shards as required, reducing network load and enabling throughput expansion by tens to 

thousands of times compared to traditional methods. By dynamically adapting to increased usage, 

Locus Chain mitigates blockchain network scalability and security issues, thus equipping it with 

unlimited scalability. Dynamic Sharding technology was also developed by Locus Chain for the first time 

in the world, and as of April 25, 2024, two out of eight patent applications filed from June 3, 2022, to 

November 3, 2022, have been granted, while the remaining six are under review. 

(3) Reducing Information Storage through Pruning 

In blockchain systems, processed information is structured into a ledger, a fundamental component 

within the blockchain network. Previously, computers participating in the blockchain network were 

required to record and store the entire ledger on local devices. However, in the context of high-speed, 

large-capacity processing envisioned by Locus Chain, the sheer volume of information becomes 

impractical to store on typical PCs. 

Locus Chain addresses this challenge through ledger pruning, a method involving the removal of 

less frequently accessed historical ledger data from local computers. 

Locus Chain adopts a Directed Acyclic Graph (DAG) ledger structure known as AWTC. Its 

proprietary Verifiable Pruning leverages this graph ledger structure to mathematically assess the 

extent to which the latest ledger state correlates with past transactions. This enables the validation of 

current and newly received information, even after removing the majority of irrelevant transactional 

data from the past. 

This significantly diminishes the hardware expenses associated with the node devices engaged in 

ledger creation. Alongside sharding for ledger and network load reduction, this technology substantially 

downsizes the ledger. While most blockchains necessitate nodes to operate on high-performance 

computers, Locus Chain enables node operation on low-end devices like mobile devices. Locus Chain is 

the pioneering developer of Verifiable Pruning technology and applied for and obtained a patent on 

August 1, 2019. 

(4) Enhancing Blockchain Ecosystems Through Contract Extension Plugin 

(VME) 

The Contract Extension Plugin serves as an Interface Architecture Solution within the Locus Chain 

Ecosystem, facilitating the integration of external Smart Contracts and server-based projects. Locus 

Chain ventured into developing this expansion pack during its 1.0 development phase upon identifying 
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a gateway that significantly enhances the platform's versatility. This strategic pivot, extending beyond 

the initial scope, marks a pivotal structural transformation driving Locus Chain's evolution, offering 

innovative capabilities and strengths. 

Locus Chain's Smart Contract engine features a "plugin" VM structure tailored to execute related 

Smart Contract transactions independently amidst the high transaction throughput of thousands per 

second. 

Moreover, it boasts a network layer primarily leveraging P2P communication for seamless 

information exchange within and between shards. This network layer not only supports Locus Chain's 

ledger and consensus mechanism but also functions as an underlying structure within the Smart 

Contract engine, enabling the execution of Smart Contracts based on ledger-recorded transactions. 

By integrating Smart Contracts from other blockchain mainnets, such as Ethereum, into the Locus 

Chain core engine via the Contract Extension Plugin, they seamlessly operate as sub-blockchain projects 

within the Locus Chain ecosystem. Projects spanning finance, smart cities, gaming, and beyond can 

function as subsystems through VME or directly on the core engine, diversely integrating into the Locus 

Chain economy based on their unique requirements. 

Through the implementation of such technology, Locus Chain is currently in the process of applying 

blockchain systems to real-world applications, utilizing them as communication networks and state 

storage databases. 

(5) Expanding the Boundaries: A Versatile Platform in Blockchain 

Technology 

Many blockchain projects are confined to usability within projects relying solely on distributed 

ledgers. Locus Chain breaks this mold by facilitating integration with server-based systems into the core 

engine through VME. While maintaining complete decentralization, it surpasses the limitations of the 

blockchain ecosystem by accommodating server-based systems, showcasing remarkable versatility. 

Locus Chain serves as a core protocol enabling the operation of microdevices and other edge devices 

for unlimited and efficient information processing and exchange. Presently, groundwork is being laid 

for the distribution of an SDK, which will empower external developers to create projects based on the 

Locus Chain Protocol. 

Upon completion of these endeavors, the versatility of Locus Chain is expected to extend to 

encompass all blockchain projects. Moreover, server-based systems will seamlessly integrate with Locus 

Chain, a fully decentralized public blockchain, through expansion packs, broadening the application 

scope from distributed ledger-based systems to encompass server-based systems and beyond. 



11 

 

3. Locus Chain Ledger and Transaction Structure 

(1) Ledger 

Much like traditional blockchains, the ledger of Locus Chain serves as a decentralized repository 

where participants can freely append information. In a narrow scope, the ledger comprises the 

cumulative transactions issued and added by participants in the blockchain. Expanding its definition, 

it encompasses consensus-related data generated to validate transactions and operational information 

pertinent to the blockchain's functioning. 

(2) Account 

An account in the Locus Chain ledger denotes an entity empowered to actively contribute 

information by initiating transactions. Each account possesses a cryptographic key pair—a private key 

and a public key—utilized to sign the transactions it initiates. Accounts are uniquely identifiable through 

addresses derived from their public keys. 

Account addresses and public keys are publicly accessible data, whereas the private key remains 

confidential to the account owner. Accounts leverage their private keys to execute actions that 

authenticate their identity, such as issuing transactions. 

(3) Account State and Transactions 

The account state denotes the current status of internal information within an account. One 

significant aspect of the account state is the balance of coins held by the account. Additionally, 

transactions allow for the generation and updating of arbitrary information values. 

Changes to the account state can only be initiated by the account owner. These alterations are 

occurred through transactions, encapsulating the modifications. For instance, if Account A intends to 

transfer 10 coins to Account B, the owner of Account A issues a transaction containing the necessary 

details to adjust the balance in the account state. 

{ 
  issuer: A,   // the issuer 
  tx_no: 4,    // transaction number 
  partner: B,  // related Account 
  pseudo_command: { 
    MOVE coin(10) FROM A TO B; 
  } 
} 

Figure 1: Example of a Transaction Issued by Account A 

While the details of the account state are public, not every value within it is recorded in the ledger. 

However, transactions may include representative values indicating when and what changes occurred, 
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enabling participants to verify the accuracy of the account state they are aware of by scrutinizing 

transaction records. 

(4) Message Transactions 

In Locus Chain, transactions serve a role akin to messages exchanged between accounts. 

Considering the provided example, upon A's transaction issuance, it is assumed that A's coin balance 

diminishes. However, as only the owner of Account B can alter its state, immediately after A's 

transaction issuance, B's coin balance remains unaffected. To augment Account B's coin balance, its 

owner must explicitly issue a transaction for the increase in coins. In this scenario, A's initial transaction 

acts as a reference for the coin increment. 

{ 
  issuer: B,     // the issuer 
  tx_no: 7,      // transaction number 
  input: [A:4],  // reference to other TX 
  pseudo_command: { 
    ADD coin(10) USING [A:4] 
  } 
} 

Figure 2: Example Transaction Issued by B 

Upon such transaction issuance, the amount of coins in B's account state is updated, and A's 

transaction fulfills its purpose. From B's perspective, A's transaction serves as a message indicating 

the transfer of coins to B. 

Viewing Locus Chain transactions as messages exchanged between accounts, the ledger in Locus 

Chain can be perceived as an intermediary form between Bitcoin's UTXO ledger and Ethereum's 

account-based ledger. In Locus Chain, transactions involving two or more accounts remain unspent 

until reaching the recipient account. Once the recipient account receives and validates the transaction, 

it transitions to a spent state. However, unlike Bitcoin's UTXO model, where outputs are received and 

produced, inputs in Locus Chain are not transactions but rather shared account states, thus negating 

the possibility of double spending at the transaction level. Nonetheless, it is conceivable that adversarial 

participants may issue conflicting transactions involving the same account state simultaneously. In such 

cases, the account state perceived by different nodes may diverge based on the received transactions, 

potentially leading to scenarios interpreted as deliberate attempts at double spending. 

(5) Transaction Numbers 

In Locus Chain, the state of an account evolves with each transaction it undergoes, and each of these 

transactions is assigned a with a sequence number (a unique identifier) known as the transaction 

number. These transaction numbers provide a chronological order to the changes in an account's state, 
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allowing for effective tracking and verification. The transaction numbering system commences with 0, 

allocated to the inaugural transaction initiated upon the creation of an account. Subsequent 

transactions are sequentially numbered, with each new transaction incrementing the transaction 

number by 1. 

This systematic numbering scheme facilitates the detection of potential double-spending incidents. 

If multiple transactions within the same account share identical transaction numbers, it raises a red flag 

for potential double spending. 

(6) Locus Chain Account-wise Transaction Chain (AWTC) 

Transactions in Locus Chain are issued one at a time, with each newly issued transaction 

automatically establishing a reference link to the preceding transaction from the same account. These 

transactions from a single account can seamlessly link together, forming what is known as the Account-

wise Transaction Chain (AWTC). Essentially, each account maintains its distinct transaction chain, 

allowing for the unrestricted addition of transactions at any given moment. 

Furthermore, as depicted in the previous example of coin transfer, a transaction can refer to 

transactions issued by other accounts. As these referenced transactions always pertain to past 

transactions in terms of time, these references function as unidirectional links, creating a Directed 

Acyclic Graph (DAG) structure.  

A transaction can reference multiple transactions, and it can also specify multiple related accounts. 

Consequently, the relationships between transactions construct a DAG, with each transaction node 

potentially having multiple input and output edges. 

 

Figure 3: AWTC Chain DAG Configuration 

The ledger of Locus Chain consists of a collection of transactions, thereby forming a DAG ledger 
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composed of account AWTCs that reference each other. Each account's AWTC in the DAG ledger 

adheres to a single rule: transaction numbers must be consecutive and unique. If this rule is maintained, 

each account is free to issue transactions as needed. 

(7) Partitioning of Shard Ledger 

Locus Chain's ledger can be partitioned into shards as required, with each shard managing a shard 

ledger.  

Transactions are allocated to shards at the account level. This means that an account is consistently 

linked to a specific shard, and all past transactions initiated by that account are regarded as part of the 

ledger associated with that shard. 

Locus Chain's dynamic sharding enables shard reorganization. Since transactions are grouped at the 

account level, shard reorganization involves transferring entire accounts to different shards. Therefore, 

during shard reorganization, accounts are moved between shards, and all transactions related to the 

moved accounts are relocated from the ledger of the original shard to the ledger of the new shard. 

Inter-shard Transaction Routing 

While transactions are always recorded in the ledger of the corresponding shard, there is a necessity 

to route transactions to other shards for inter-shard data exchange. For instance, when data exchange 

occurs between two accounts belonging to different shards, transactions issued by each account must 

be routed to the respective shard of the recipient in a verifiable format. 

(8) Node and Network Shard 

In Locus Chain, sharding is a process where the ledger is logically divided, and the network is 

physically partitioned (“Sharded”). This means that nodes participating in the network are grouped into 

shards, where the primary exchange and sharing of shard ledger information occur among nodes within 

the same shard. The number of network shards corresponds to the number of ledger shards in Locus 

Chain, with each network shard being responsible for managing one ledger shard. 

(9) Node 

Nodes in Locus Chain are computer programs connected to the internet. They communicate with 

other nodes and exchange information using a peer-to-peer (P2P) approach. 

Each node is associated with a Locus Chain account, known as the node owner or representative 

account. This account is always linked to a specific shard, and the node belongs to the shard to which 

its owner account is assigned. 

All nodes participating in the Locus Chain network have the responsibility and obligation to perform 

basic transaction transmission and verification roles. Unlike other blockchains, Locus Chain does not 
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include light nodes that perform limited functions. 

 

Figure 4: Locus Chain Node Sharding and P2P Communication Concept Diagram 

 

(10) Peer-to-Peer Communication Network 

In Locus Chain, nodes communicate directly with each other through peer-to-peer (P2P) 

communication. This P2P communication operates at a standard level, wherein information generated 

by a node is disseminated to all connected neighboring nodes, and information received from one node 

is relayed to others. Unless there's a specific reason not to, nodes generally respond to requests for 

information from other nodes if they possess the requested data. 

Each node typically maintains connections with around 4 to 8 other nodes through P2P connections, 

which remain active for relatively extended periods, ranging from a few minutes to several minutes. 

Approximately half of these connections are within the same shard, while the remaining connections 

link nodes across different shards. 

(11) Partitioning Shard Network 

When a node establishes a new connection with another node, it can identify the shard affiliation of 

the peer node based on its representative account information. By routing information differently based 

on the shard affiliation of the peer node, the network effectively partitions into shards. 

For instance, newly generated transactions within a shard are uniformly distributed to nodes within 

the same shard but aren't typically broadcast to nodes in other shards by default. However, if a new 

transaction involves an account in a different shard and there are connected nodes leading to that shard, 

the transaction is forwarded accordingly.  
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4. Consensus Algorithm 

A. Shard Consensus 
The shard ledger represents a compilation of transactions from accounts within a specific shard. 

Whenever an account in a shard initiates a transaction, it must be incorporated into that shard's ledger. 

To ensure this process, it's vital to confirm that transaction information has been reliably disseminated 

to most nodes within the shard. 

The division of the ledger into shards in Locus Chain is a crucial aspect to consider. Information is 

not inherently shared across different shards. Thus, for a shard to utilize a transaction from another 

shard, it needs to receive sufficient validation information (proof) to verify its validity. 

This validation information must remain immutable and finalized once provided. Locus Chain 

achieves this by employing a method that achieves a complete and unchangeable block state through 

the consensus of multiple nodes. 

In Locus Chain, transactions issued within each shard are aggregated to form consensus blocks, 

which are conclusively determined using a Byzantine Fault Tolerance (BFT) consensus algorithm. This 

process of block creation and confirmation within a shard is known as shard consensus. 

The generation of consensus blocks in Locus Chain involves executing a BFT consensus algorithm 

with multiple leader nodes. Nodes participating in consensus are selected using a Weighted Proof-of-

Stake mechanism through a random function. 

Before reaching the BFT consensus stage, in the event of detecting duplicate double-spending 

transactions, a convergence voting consensus involving all nodes within the shard is conducted during 

the transaction propagation phase to resolve such conflicts. 

Each shard's consensus operates independently. 

(1) Pre-consensus Stage: Evaluation of Transaction Validity 

Accounts generate transactions by packaging information into a transaction format and signing it. 

This process allows accounts to potentially create transactions with arbitrary content, opening the door 

to the possibility of dishonest transactions, such as double-spending. Within blockchain systems, only 

transactions that align with the historical context of the agreed-upon blockchain are considered valid. 

Honest nodes within the network are responsible for including only valid transactions in their 

processing, while disregarding or rejecting any deemed invalid. Similarly, in the context of Locus Chain, 

transactions' validity is judged in a reasonable manner within blockchain technology. 

In Locus Chain, each account and node follow formal and procedural methods to determine the 
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validity of transactions. Initially, all transactions must be signed using the private key of a valid account. 

Moreover, transactions originating from the same account must be assigned a sequential number, 

starting from zero and incrementing by one. 

Transactions that have not yet reached consensus must be assigned consecutive numbers, beginning 

from the last agreed-upon transaction of the account. In cases where multiple transactions share the 

same number, the consensus process selects one transaction for inclusion. 

Once consensus is achieved, transactions must have their information incorporated into the agreed-

upon shard blockchain and world state chain. 

The arbitrary content included by an account in a transaction is not utilized in the determination of 

its validity within Locus Chain. While transactions may contain arbitrary information, it's neither 

appropriate nor feasible for participants to evaluate this content from an external  (Third-Party) 

perspective. However, information defined and publicly known within Locus Chain, such as coin 

amounts, is utilized in the validity assessment process. 

(2) Duplicate Detection and Converging Voting Competition in Transaction 

Transmission 

Newly issued transactions are disseminated within a shard via P2P communication. If a node 

receives distinct transactions sharing the same account and transaction number, these transactions are 

flagged as duplicates. Among duplicates with identical transaction numbers, only the transaction most 

widely propagated across the shard is considered valid, while the other is deemed invalid and discarded. 

A converging voting competition, initiated upon the occurrence of duplicate transactions during 

transmission, serves as a mechanism to select a single transaction from duplicates. This process engages 

all nodes within the shard and commences asynchronously upon the detection of duplicate transactions. 

Duplicate Transaction Detection Voting Message 

When a node encounters two or more transactions within the same round featuring the same 

account and transaction number, it broadcasts a duplicate detection voting message across the shard 

via the P2P network. This message includes details of the duplicate transactions identified by the node 

and indicates which transaction it received first. 

By aggregating duplicate detection messages generated across the shard, nodes can roughly discern 

the transaction that has been most widely disseminated. Nodes prioritize the transaction that has 

garnered the most votes based on the aggregation, rather than the one received first. Nodes tasked with 

generating block candidates utilize the aggregation of these duplicate detection messages during block 

creation to select the transaction with the highest vote count among duplicates for inclusion in the block. 
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Confirmation of Transactions Without Duplicate Detection Messages 

If two duplicate transactions occur with a significant time gap between them, the first transaction 

essentially takes precedence. Due to the nature of P2P communication, transactions are typically 

propagated throughout the entire shard after approximately 𝐷  steps, where 𝐷  represents the 

diameter of a random graph. Consequently, once the first transaction has reached most nodes after 𝐷 

steps, it's highly likely to be acknowledged as the primary transaction in duplicate detection messages 

triggered by subsequent transactions. Therefore, it becomes practically unfeasible for subsequent 

transactions to alter the aggregation results of duplicate detection messages. 

As a result, honest nodes can consider a transaction confirmed and proceed with processing if no 

duplicates occur for a significant period after its reception. In Locus Chain, the time required for a 

transaction to be sufficiently propagated within a shard is set to around 10 seconds. In essence, if no 

duplicate detection messages are triggered within this timeframe of receiving a transaction, it's deemed 

practically valid and confirmed for processing even before the initiation of block creation consensus. 

While most user applications may suffice with treating transactions as valid once they have been 

confirmed for a practical duration, establishing a benchmark for sharding and pruning necessitates 

recording an irreversible final state of the ledger within the shard. To achieve this, Byzantine Fault 

Tolerance (BFT) consensus is employed to ensure consensus on the entire ledger state within the shard. 

(3) Assumptions for Locus Chain's BFT Consensus 

In executing the consensus algorithm of Locus Chain among nodes existing on the actual internet, 

the following communication assumptions are expected. 

Stability of P2P Communication 

Locus Chain relies on P2P communication for exchanging information like transactions. Thus, Locus 

Chain assumes that once transactions are issued, they can be swiftly disseminated to the majority of 

nodes within the shard via P2P communication in a short timeframe. Specifically, the interconnectivity 

among nodes within the shard resembles that of a random graph, and the distance between any two 

nodes within the network falls within the diameter (𝐷) of the random graph. Consequently, it's expected 

that information originating from any node will propagate to all nodes within the shard within 𝐷 + α 

steps of communication. 

Accuracy of Node Clocks 

Locus Chain's consensus algorithm incorporates real-time-dependent processes such as timeouts. 

Therefore, it's assumed that the majority of nodes participating in Locus Chain possess reasonably 

accurate real-time clocks. More precisely, node clocks are assumed to exhibit an error margin that is 
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handled within network communication timeouts, with practical error expectations within 10 seconds. 

Nodes with significantly inaccurate timekeeping are deemed Byzantine. 

Distribution of Honest Nodes 

While nodes in Locus Chain may exhibit adversarial behavior like issuing fraudulent transactions or 

engaging in dishonest voting during consensus, it's presumed that a sufficient proportion of nodes act 

honestly for the system's functioning. 

Specifically, in the consensus process, it's assumed that more than 
ଵ

ଷ
 of randomly selected nodes are 

consistently honest. Locust Chain's consensus process accommodates consensus failures and retries, 

prioritizing the prevention of reaching consensus with incorrect content over achieving consensus with 

complete content. If incorrect consensus can be averted, block chain creation proceeds through retries. 

If over 
ଵ

ଷ
 of the total voting nodes are honest, it can prevent incorrect content from prevailing in 

consensus. 

(4) Round State (RS) Consensus Block 

A consensus block serves as a structural component for finalizing transactions. While resembling 

traditional blockchain blocks in many aspects, it diverges by not directly encompassing transactions but 

solely containing the root hash of the shard. It's alternatively denoted as a round block or round state, 

contingent on the context. 

The pivotal data within a block comprises the list of hash values of generated transactions. 

Furthermore, it incorporates details representing the state of the blockchain and shard, encompassing 

the hash value of the preceding block, alterations in shard-wide stake distribution, and the chronicle of 

account modifications. 

Blocks attain finality through cryptographic signatures, ensuring an appropriate and verifiable 

confirmation process. 

(5) RS Consensus Time Units 

Consensus Round 

In Locus Chain, blocks are generated at specific time intervals. Currently, one block is generated 

every 2 minutes. In other words, the consensus algorithm executes approximately every 2 minutes, 

encapsulating transactions accrued over this duration within each block. This 2-minute cycle is termed 

a Round. 

Following the conclusion of a round, the consensus algorithm commences after a 40-second interval. 

This buffer period allows ample time for transactions occurring just before the round's termination to 

propagate adequately within the shard. 
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Epoch 

Another temporal metric is the epoch, which is a unit used for convenience to stabilize the internal 

state of the shard. For example, the stake proof weight used to select consensus nodes is determined at 

the beginning of each epoch and remains unchanged throughout the epoch. Currently, each epoch spans 

24 hours, equivalent to 720 rounds. 

(6) RS Consensus Committee 

Typically, around 50 nodes engage in each consensus round. The selection of consensus committee 

nodes is primarily based on a weighted random process. 

Types of Consensus Participant Nodes 

The nodes involved in consensus encompass proposer nodes, voter nodes, or committee nodes. 

Proposer nodes take on the role of generating candidate blocks, while committee nodes execute the 

consensus algorithm on these generated blocks, producing signatures to finalize suitable blocks. 

Selection Process for Consensus Participant Nodes 

Determining whether a particular node acts as a proposer node relies on factors like a fixed value 

derived from stake changes up to the start of the epoch, the current round number, and the node's 

representative account address. This is executed by comparing the computed selection values of each 

node. Additionally, for the selection of committee nodes, actual participation records within the 

committee are considered. 

Each node calculates its own "selection value" for each round in a verifiable manner. If this value 

surpasses a certain threshold, it is disseminated within the shard via P2P communication. Any node can 

verify these selection values. Nodes validate and sort the selection values of other nodes based on 

appropriate criteria, selecting a new set of nodes accordingly. While a specific number of committee 

nodes are chosen, the count of selected proposer nodes may fluctuate based on the round. 

Once selected, nodes retain their committee eligibility for a set number of rounds. Presently, nodes 

remain eligible to participate in the committee for 7 rounds. Consequently, approximately 14.3% of the 

total committee nodes undergo changes with each round. 

Communication During Consensus 

Nodes within the consensus group communicate closely, mirroring direct communication between 

nodes. 

Nodes not partaking in consensus lack visibility into the communications occurring during the 

process. They can only observe the final consensus outcome. 
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B. BFT Consensus Algorithm 
The consensus algorithm of Locus Chain progresses through four stages. Participating nodes 

autonomously execute each stage according to real-time clocks, with each stage running at intervals of 

10 seconds, without the need for separate communication for synchronization. 

The consensus stages are as follows: 

• Block proposer nodes generate block candidates. 

• Voter nodes select a block through the first round of voting. 

• Voter nodes finalize block selection through the second round of voting. 

• Block Signing 

 

(1) RS Block Candidate Generation 

After a round concludes, each block proposer node collects transactions received during that round 

to create block candidates. 

Block candidates consist of the hash values of each transaction arranged in a Merkle Tree structure. 

Block proposer nodes organize the received transactions appropriately, listing the hash values of each 

transaction in the order they're arranged to generate a block. 

If the received transactions are identical, the resulting block candidates are identical as well. For 

each round, a number of block candidates equal to the number of block proposer nodes are generated. 

In cases where all block proposer nodes receive the same transactions, all resulting block candidates are 

identical. 

Block proposer nodes transmit the created block candidates to all voting nodes. 

Detection of Inappropriate Transactions 

Each candidate node excludes inappropriate transactions when creating a block. 

First, the transaction number of each transaction is verified. The transaction number, a sequential 

identifier assigned to transactions by an account, must be contiguous. Thus, any account with 

duplicated or discontinuous transaction numbers indicates inappropriate transactions. 

In cases of discontinuous numbers, transactions occurring after the discontinuity are disregarded. 

For duplicated numbers, if a transaction with the same number exists in a previous block, the new 

transaction is dismissed. 
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In scenarios where different transactions with the same number are detected as duplicates within 

the same round, the transaction with the highest propagation through the aggregation of duplicate 

detection messages is chosen. 

(2) RS Block Selection Voting (First Voting) 

The block candidate created by the block proposer node is disseminated to each voting node. Every 

voting node compares the received block candidate with the transactions it directly received to select 

the block that best fits its received transaction results. Subsequently, it signs the hash value of the 

selected block to produce a first voting message. 

If the received block candidate includes transactions not received by the voting node, it may request 

those transactions from other nodes to update its received transactions and assist in block selection. 

The generated first round block selection voting messages are then transmitted to other voting nodes. 

(3) RS Block Confirmation Voting (Second Voting) 

Each voting node aggregates its own and other nodes' first voting messages, aiming to identify a 

block candidate with over 
ଶ

ଷ
 of the total voting nodes' votes. If such a candidate exists, each voting node 

issues and signs a "round block confirmation message" for that block. 

Should there be no block candidate garnering more than 
ଶ

ଷ
 of the votes from the voting nodes, each 

voting node issues and signs a "round block confirmation failure message" for that round. 

The signed round block confirmation and confirmation failure messages are propagated throughout 

the shard via P2P. Every node within the shard can receive and review each voting node's round block 

confirmation message. 

(4) RS Block Finalization 

When any node within the shard receives round block confirmation messages issued by over 
ଶ

ଷ
 of 

the total voting nodes for a specific block candidate, that block candidate is considered finalized as the 

block representing the state of the round. 

To ensure the persistence of block finalization status, round block confirmation messages are 

included in the subsequent round's block. 
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(5) Block Generation Consensus Failure Determination 

If a node receives round block confirmation messages for a specific block from fewer than 
ଶ

ଷ
 of the 

voting nodes and receives round block confirmation failure messages from over 
ଶ

ଷ
 of the voting nodes, 

the consensus for that round is deemed failed. 

Failure scenarios on a step-by-step basis may include: 

Failure to Generate Block Candidates 

This could occur if all block proposer nodes fail to create a block, are unable to create one, or if the 

created block fails to propagate correctly. 

If no block candidates are generated by the time round block state voting begins, voting nodes 

immediately issue round block confirmation failure messages. If over 
ଶ

ଷ
 of the voting nodes within the 

shard issue such messages, the round block generation is considered a failure. 

Failure during Round Block State Voting 

If voting nodes fail to validate all generated block candidates, they issue round block confirmation 

failure messages. Similar to scenarios where block candidates are not generated, if at least 
ଵ

ଷ
 of the total 

voting nodes issue round block confirmation failure messages, it results in block confirmation failure. 

Failure during Round Block Confirmation Voting 

If voting nodes fail to receive a sufficient number of round block confirmation messages, it indicates 

a breakdown in network reliability or the honesty assumption of the nodes, leading to the issuance of 

block confirmation failure messages. 

(6) Consensus Retry 

If consensus for block generation fails, a retry is conducted in the subsequent round. In the next 

round, both the consensus from the previous round and the current round are simultaneously executed 

in parallel. 

During a retry, temporarily increasing the number of newly elected consensus committee members 

can reduce the likelihood of adversarial node elections. 
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C. World Round State (WRS) Consensus 
Shard ledgers operate autonomously, managed and executed independently for each shard. 

Consequently, nodes lack direct means to verify whether transactions originating from other shards 

have been appropriately confirmed into blocks. 

The process of World Round State (WRS) Consensus amalgamates the consensus results from each 

shard's rounds to produce a WRS Block. These WRS Consensus outcomes are disseminated across all 

nodes within the Locus Chain network and serve as a basis for validating both the legitimacy of round 

blocks in other shards and the transactions enclosed within. 

(1) WRS Block 

The WRS Block is crafted by consolidating data from the shard round blocks generated by each shard. 

WRS Blocks are generated in every round, encompassing hashes of all previously agreed-upon shard 

blocks from the preceding round, accompanied by their confirmation signature messages. 

The agreed-upon WRS Blocks are distributed to all nodes. 

(2) WRS Block Consensus Algorithm 

WRS Blocks are generated through the coordination of the WRS Consensus Committee. 

The algorithm employed closely mirrors the shard round consensus process. Each round involves 

transmitting information about the shard round blocks agreed upon in the preceding round by all 

shards to the WRS Consensus Committee. This transmitted data includes the hashes of the round blocks 

and the round block confirmation messages. The WRS Consensus Committee, upon receiving this 

information, proceeds to sign WRS Consensus block confirmation messages for the generated block 

candidates, thereby effectively finalizing the blocks. 

(3) WRS Block Consensus Committee 

The WRS Block Consensus Committee serves as an expansion of the shard consensus committee. 

Members of the WRS Block Consensus Committee are drawn from the existing consensus 

committees of each shard. During each round, one shard is randomly chosen, and the consensus 

committee nodes of the selected shard are incorporated into the WRS Block Consensus Committee. 

Similar to the shard consensus process, these added nodes disengage after a predetermined number of 

rounds, currently set at 7 rounds.  
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5. Dynamic Sharding 
Locus Chain addresses the scalability issues of blockchain through dynamic sharding. It partitions 

the ledger and network into shards based on transaction volume. As the total transaction volume 

increases, new shards are generated to prevent any single shard from becoming overloaded. Moreover, 

if the transaction volume in a shard fluctuates, shard reorganization occurs by transferring individual 

accounts between shards to maintain uniform shard sizes. 

(1) Locus Chain’s Dynamic Sharding 

Dynamic sharding in Locus Chain primarily aims to enhance transaction throughput. The volume of 

transactions a shard can handle is limited by the size of the network and the number of participating 

nodes. Therefore, when the overall transaction volume of the system increases, it becomes necessary to 

increase the number of shards. Ideally, each shard should process an equal number of transactions. 

Dynamic sharding in Locus Chain refers to the algorithmic adjustment of the number and size of 

shards to bring the entire network closer to an ideal state. This process involves measuring the network's 

state, adjusting shard sizes through node migration to achieve balance, and dynamically regulating the 

number of shards for optimal performance. 

(2) System State Evaluation 

To perform shard partitioning and restructuring, it is essential to first assess the state of each shard 

and the entire world. The state of the world is represented by factors such as the number of nodes, 

transaction volume, and node stakes. 

The workload of each shard is determined by its transaction volume. The throughput balance 

between shards can be determined from the transaction volume of all shards. Balancing the workload 

among shards involves redistributing the workload through node and account migration if the 

imbalance exceeds a certain threshold. Additionally, efforts are made to align the number of nodes and 

stakes across shards. If the overall workload of the world exceeds a certain threshold, additional shards 

are created. 

The System state evaluation involves collecting information at epoch intervals and round intervals. 

Shards gather the following information near the end of each epoch for consensus and use it as a basis 

for subsequent epoch's PoS calculation. 

• Number of accounts considered for consensus and sharding 

• Stake amount of each account 

Additionally, information such as transaction volume and the number of participating accounts is 

recorded at each round for consensus and is used to determine shard restructuring. 
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• Transaction Volume 

• Number of participating accounts 

(3) Shard Reconstruction through Account and Node Migration 

The decision on which accounts to include in each shard is determined based on transaction volumes 

between shards. If a shard experiences a high transaction volume, accounts with a higher probability of 

transactions are moved to shards with lower transaction volumes. 

During the migration of accounts between shards, the corresponding AWTC ledger information is 

first copied to the destination shard and then removed from the original shard. Alongside the account 

migration, the associated node also relocates. The migrating node integrates into the new shard's 

network by obtaining information from it, excluding the data it already manages. 

The decision to migrate nodes and accounts is made independently by each node. The collected 

world and shard information is shared among all nodes, and if consensus is reached based on this 

information, each node proceeds with account migration accordingly. If a malicious node refuses to 

comply with the consensus decision, it fails to exchange information with honest nodes, leading to its 

exclusion from the network. 

Information regarding account and node migration is recorded in the round blocks of each shard 

through a consensus mechanism. 

 

Figure 5: Shard Reconstruction through Node Migration 

 

(4) Shard Increment and Decrement 

As transaction volumes in the network increase, expanding the overall transaction processing 

capacity requires an increase in the number of shards. Shard splitting, a method whereby existing 

shards are divided into two, is utilized for this purpose. 
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Determining the Shard number for Splitting 

Each shard is assigned a sequential ID. When adding a new shard, its ID is incremented. To split a 

shard and create a new one, the most significant bit (MSB) of the new shard's ID is inverted. For example, 

if there are currently five shards numbered from 0 to 4, the ID of the newly added sixth shard becomes 

5. To increase the number of shards, shard 1 (the second shard) with the most significant bit (MSB) of 

the binary representation 101 of decimal ID 5 inverted is targeted for partitioning. This method ensures 

that shard splitting occurs fairly and sequentially. 

Adjustment of Shard Size Before Splitting 

It's essential to ensure that the number of nodes after the split is of an appropriate size. Therefore, 

when shard splitting is decided, the target shard is inflated to approximately 1.8 times larger than the 

others. 

Once the shard number to split is determined, nodes are gradually moved from other shards to the 

target shard over several rounds, increasing the number of nodes to about 1.8 times that of the other 

shards. Efforts are made to move nodes with fewer transaction occurrences to maintain a balanced 

transaction processing capacity among shards. 

Splitting the target shard into two when the number of nodes increases ensures that each shard has 

a similar number of nodes after the split.  

 

Figure 6: Increasing Shard Count through Shard Splitting 

(5) Shard Directory and Home Shard 

As part of shard reconfiguration, both accounts and nodes may be reassigned to different shards in 

any given round. Consequently, when multiple accounts need to send transactions to other accounts, 

it's crucial to determine which shard the target account currently resides in. 
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In Locus Chain, an account directory management mechanism based on the account address is used 

to pinpoint the shard of an account. 

Each shard is assigned a unique shard number (ID). The shard to which the account currently 

belongs is referred to as the working shard. Apart from the account's working shard, a fixed shard ID 

can be computed from the account address. For instance, dividing the account address by the current 

number of shards and taking the remainder yields a numerical value corresponding to the shard count. 

This calculated fixed shard ID for each account is termed the home shard. Even if an account moves 

between shards and its working shard ID changes, the home shard ID remains unchanged. Therefore, 

by managing directories of accounts designating a particular shard as their home shard, it's possible to 

determine the current shard of an account. 

If a node wishes to determine the current working shard ID of a specific account, it can request 

communication (query) with nodes connected to it belonging to the home shard of the account in 

question, thus identifying the working shard of the account. 

During an account's shard migration, ledger information is transferred between the shard before 

migration and the shard after migration. Simultaneously, an update request is made to refresh the 

working shard directory information for the account's home shard. 
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6. Verifiable Ledger Pruning 
With a blockchain system capable of processing 1,000 transactions per second, each is containing 

1,000 bytes of data, then the daily volume of ledger information amounts to 86.4 gigabytes. Even though 

sharding reduces the amount of information handled by each node to 1 / (number of shards), storing 

the data generated over several years becomes impractical for all nodes. 

In Locus Chain, storage space can be conserved by implementing pruning, removing information 

from nodes' local storage that they and associated accounts do not directly require. 

While pruning is not mandatory for all nodes, Locus Chain operates under the assumption that most 

nodes will engage in pruning by default. 

(1)  Understanding the Relevance of Transaction Information 

From the viewpoint of each account, the majority of information generated within the blockchain 

system and recorded in the ledger lacks direct relevance to the account itself. The ledger encompasses 

data concerning AWTC DAG transactions of each account and information related to block creation 

consensus, with the degree of relevance determined by the connectivity within the mathematical graph. 

Accounts and nodes executing pruning can actively remove transactions with limited relevance. 

Account-Related AWTC Transactions 

The ledger of Locus Chain consists of transactions linked in a time directional graph known as a 

Directed Acyclic Graph (DAG). Transactions initiated by an account always include a hash value 

pointing to the preceding transaction of the same account, and in some cases, may include additional 

links through hash values pointing to transactions outside of this scope. Within this DAG ledger 

structure, an account can trace back the links of past transactions referenced by its own issued 

transactions, thereby discerning all transactions relevant to itself. By calculating the distance in links 

from its own transactions to others, the level of association can be quantified. 

Using this, an account can remove transactions from its AWTC ledger that are deemed beyond a 

certain degree of relevance. From the perspective of an account, most transactions are those with an 

infinite link distance (∞) and hold no reason for preservation by the node. Conversely, transactions with 

closer relevance must be retained. 

Ledger Consensus-Related Information 

Nodes participating in block creation and consensus within a shard must validate all newly generated 

transactions within their jurisdiction. To verify a new transaction, it's essential to have information on 

past transactions referenced by the new one. The crucial reference for a new transaction is the preceding 
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transaction of the account that issued it. Therefore, nodes participating in consensus should have access 

to the final issuance transactions of all accounts within their node for validation purposes. 

Other transactions referenced by a new transaction, aside from the immediate preceding one, are 

acquired as needed. By ensuring nodes to acquire the transactions necessary for validation, accounts 

issuing new transactions must provide the required reference transactions and validation information 

along with the new transaction. This allows previously pruned past transactions necessary for validation 

to be (temporarily) re-referenced alongside the issuance of a new transaction, even if they have been 

completely pruned within the shard. 

(2) Verification of Pruned Past Transactions 

In Locus Chain, when necessary past transactions for validating a transaction have been pruned and 

are not locally available, there's a need to acquire them afresh from other nodes to revalidate their 

legitimacy. 

In traditional blockchains, transactions are organized in a linear linked list. Hence, to ascertain the 

validity of any given transaction, it's imperative to trace back through its referenced past transactions 

and forward through its dependent future transactions until reaching a known, confirmed transaction. 

This validation process demands a computational complexity of (𝑛). 

In Locus Chain, transactions are structured within a Hierarchical Skewed Merkle Tree, which 

employs an optimized data structure and verification algorithm. This allows for transaction validation 

with a computational complexity of (log 𝑛). 

(3) Hierarchical Skewed Merkle Tree 

A Merkle tree is a tree data structure where each leaf node contains a cryptographic hash of the 

underlying data, and each non-leaf or branch node contains the cryptographic hash derived from the 

contents of its child nodes. Merkle trees are widely used for proving the existence of certain information 

in a list. 

A simple Skewed Merkle Tree (SMT) is a type of Merkle tree where each internal node has two child 

nodes. One child node is a leaf node, and the other is the previous internal node. The Skewed Merkle 

Tree functions like a linked list based on the Merkle tree. When new information is added to the SMT, 

it is added on top of the existing root node by linking a new root node. The first child node of the new 

root node points to the newly added information (leaf node), and the second child node becomes the 

existing root node. Verification of nodes in the SMT involves hash verification of the Merkle tree. This 

is accomplished by comparing the hash value derived from the information of the child nodes with the 

hash value contained in the node. Since the verification of Merkle tree hash values is done recursively 

through the second link, it essentially requires computing the hash values of all past information. 
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In a Hierarchical Skewed Merkle Tree (H-SMT), each internal node has three child node. Similar to 

the SMT, two of these child node consist of a leaf node and the previous internal node. However, the 

third node holds the hash value of a child node that is not a leaf but rather an intermediary node. This 

third child node, termed the "jump link," facilitates traversing a linked list exponentially within the H-

SMT structure. 

 

Figure 7:  A Hierarchical SMT of base=3 

 

Calculating Jump Link Distance 

The jump link points to another node in the past Merkle tree. To determine how far back in the past 

the link should reference, the H-SMT employs the exponential power of a base distance 𝑏. 

For an H-SMT with a base distance 𝑏, the distance 𝑑 that a Merkle tree node at height 𝑛 references 

with its jump link is calculated as follows: 
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Distance d = −൫𝑏(ଵା(௡ିଵ) ୫୭ୢ ௕)൯ 

A node at height 𝑛 refers to nodes in the past calculated by 𝑑. For instance, with a base distance 𝑏 = 

3, a node at height 4 references a node at height 1, which is 𝑑 = -(31) distance away. Similarly, a node at 

height 11 references a node at height 2, which is 𝑑 = -(32) distance away. Continuing this pattern, a node 

at height 30 references a node at height 3, which is 𝑑 = -(33) distance away. 

 

Verification of H-SMT Nodes 

Using jump links, the H-SMT acts as a data structure akin to skip lists, but with verification 

conducted through Merkle trees rather than linked lists. 

Thus, validating information contained within the H-SMT resembles finding the shortest path from 

the leaf node of that information to the root node of the H-SMT, identifying the Merkle hash values 

along this path. 

By leveraging jump links, it becomes possible to traverse a distance equivalent to a power of the base 

distance, significantly reducing the amount of information required for verification to approximately 

the logarithm of the overall graph height ℎ. 

(4) Verifiable Pruning 

Locus Chain implements transaction verification using H-SMT, allowing for the validation of any 

transaction with a computational complexity of (log 𝑛). 

The information necessary for transaction validation can be readily generated by extracting relevant 

data held by the transaction issuer at the time of issuance or by successful verifiers. When transmitting 

a transaction to other accounts and nodes, including this validation information guarantees the 

transaction's legitimacy. This facilitates the exchange of information with assured legitimacy, 

irrespective of the pruning status on the recipient's end. 

As an additional advantage of verifiable pruning, the initialization time for new nodes is shortened. 

By taking into account the minimal transaction data required for ledger integrity checks and the 

essential validation information for transactions, nodes can be reconstructed efficiently. In real-world 

settings, the startup time for new nodes typically ranges from several tens of seconds. 
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Figure 8: Hierarchical Skewed Merkle Tree and Jump Links exceeding exponential distances. 
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7. Inter-Shard Communication 

(1) The Importance of Inter-Shard Communication 

Each shard operates independently without inherent knowledge of others. However, for tasks like 

delivering transaction details and account movement, inter-shard information exchange is essential, 

necessitating a method of communication between shards. 

(2) Inter-Shard Communication Among Nodes 

Roughly half of the communication connections for each node consist of intra-shard communication, 

while the remaining half involves communication with nodes from other shards, referred to as inter-

shard communication. In intra-shard communication, transactions and messages are directly 

transmitted without further consideration. The legitimacy of received messages is individually verified 

by each node. 

Inter-shard communication mainly occurs when a transaction involves accounts from different 

shards. For instance, consider a transaction where account A intends to send coins to account B. If 

account A belongs to shard i and account B to shard j, the transaction initiated by A is issued in shard i 

but information also needs to be sent to shard j where B resides. In such cases, inter-shard 

communication facilitates the transmission of the transaction from shard i to shard j. 

During communication with other shards, simple query messages are transmitted and executed 

directly without much consideration. However, in cases requiring clear verification, such as 

transactions, it is preferable to exchange necessary verification information with communication. 

(3) Nodes Engaged in Inter-Shard Communication 

Every node within a shard actively participates in inter-shard communication. If a node receives a 

transaction through intra-shard communication that needs to be transmitted to another shard (let's call 

it shard j), it will relay the transaction to its neighboring nodes that are belonging to shard j. However, 

nodes do not establish new communication channels exclusively for inter-shard communication. 

When a node receives a transaction from another shard, it transmits this transaction within its own 

shard using the standard intra-shard communication methods. 

(4) Strength of Verification Information 

In transaction validation, there are multiple levels of verification information with varying degrees 

of strength. These can broadly be categorized into hard proof and soft proof verifications. 
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Hard Proof Verification 

Hard proof verification comprises information that fully demonstrates the consensus status of a 

transaction based on the world state. For instance, if a transaction is included in a block generated 

through intra-shard consensus, it will be accompanied by a Merkle tree path derived from the WRS 

block. 

Complete hard proof verification becomes available only after the confirmation of world consensus, 

typically requiring the time required for at least one or more round, from transaction creation. Although 

robust, it may lack immediacy. 

Soft Proof Verification 

When transmitting transactions in an unconfirmed state, not yet included in blocks, to other shards, 

it's possible to provide information linking to existing transactions verifiable from the WRS. For 

example, by transmitting information that verifies the immediately preceding transaction of a newly 

generated transaction, it can offer an indication that the transaction is not entirely fabricated.  

Soft proof verification cannot offer full consensus validation for a transaction. However, among 

nodes possessing adequate information, such as consensus-executing nodes, it provides sufficient 

verification capability to be considered reliable information. 

(5) Request for Verification Information 

If a shard receiving a transaction lacks adequate information to verify it, it can initiate a request to 

the sender for verification proof. For instance, if a transaction received from a third shard references 

another transaction not known to the receiving shard, verification information can be requested from 

the shard associated with the unknown transaction to enable verification. 

Since the party requested for verification information can be any arbitrary node, nodes can 

probabilistically request verification information through a third party node and conduct cross-

verification.  
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8. Smart Contracts 
Locus Chain is a high-performance blockchain system designed to handle thousands of transactions 

per second. The high-speed transaction processing presents various technical challenges, and how 

Locus Chain overcomes these challenges has been discussed in the preceding chapters. Similarly, 

executing smart contracts at such transaction processing speeds brings about issues that were not 

previously apparent. 

(1) Smart Contract Execution Calculation Model 

Present-day smart contracts essentially possess functionality equivalent to regular computer 

programs. Consequently, executing smart contracts necessitates additional hardware resources such as 

CPU and memory, much like running multiple regular computer programs concurrently. The resource 

requirements for smart contract execution scale proportionally with the number of smart contracts 

being processed. In Locus Chain, which targets performance several hundred times greater than 

existing blockchains, computation would demand several hundred times more CPU and memory than 

current smart contracts require accordingly to rough calculation. This surpasses the capabilities of a 

typical home PC and makes it unfeasible for each node in the existing smart contract model to execute 

all loaded smart contracts. 

To tackle this challenge, Locus Chain employs a segmented approach to smart contract execution. 

Simply put, smart contract execution is partitioned into multiple groups and processed in parallel. Each 

group handles a sufficient number of smart contracts that can be executed without issues. By 

distributing different smart contracts among multiple groups for parallel execution, the model enables 

the overall execution of a large volume of smart contracts. 

(2) Smart Contract Accounts and Execution Groups 

Each smart contract running on Locus Chain possesses a unique address, akin to standard Locus 

Chain account addresses. 

The role of smart contract execution groups is to generate transactions initiated by smart contract 

account addresses. Initially, a regular account triggers smart contract execution by issuing an input 

transaction to the smart contract address. The smart contract execution group then processes the input 

transaction in the appropriate sequence, creating transactions for the respective smart contract address. 

The output of smart contract execution results is logged in the ledger of the associated AWTC chain 

address and undergoes sharding and pruning similar to ledger entries of regular accounts. 

In essence, smart contract execution groups are clusters of node computers within Locus Chain 

responsible for executing and finalizing the results of the smart contracts under their management, 

recording them in the Locus Chain ledger. 
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(3) Node Participation in Smart Contract Execution 

Nodes have the discretion to decide whether they will engage in smart contract execution. 

Locus Chain boasts an incidental advantage of functioning efficiently on low-performance, low-

capacity IoT devices through pruning and sharding technology. However, smart contract execution 

demands additional CPU performance and memory, alongside ledger verification functionality. This 

may strain IoT device hardware, which is typically compactly designed for specific purposes and may 

lack spare resources for smart contract execution. 

Therefore, in Locus Chain, smart contract execution is not mandated for all nodes. Instead, nodes 

with sufficient hardware performance capabilities can opt to participate in smart contract execution. 

Participating nodes receive additional incentives, distinct from Locus Chain transaction management, 

encouraging nodes with available resources to join in smart contract execution. 

Nodes can independently choose the smart contract execution group in which they wish to 

participate. Each smart contract execution group may have varying hardware requirements. Nodes can 

select a group aligned with their performance capabilities. 

Smart contract execution groups can be formed at any time by participants. To establish a new 

execution group, an account selects a supported smart contract language VM environment and pledges 

assets as initial capital for the group. Once created, other nodes can join or leave the group relatively 

freely. 

(4) Locus Chain VME: Smart Contract VM Execution Environment Service 

Locus Chain operates a framework for executing a multitude of smart contracts by running multiple 

smart contract groups independently on a high-performance transaction processing base. To facilitate 

this framework, there exists a system interface that links the Locus Chain ledger with smart contract 

groups, known as the "Locus Chain Virtual Machine Environment (VME)." 

The Locus Chain VME encompasses blockchain-level functionalities, such as supporting smart 

contract execution result transaction generation and consensus node selection, as well as network-level 

functionalities like packet communication support between nodes. It serves as a kind of "layer 1.5" 

system service. For instance, through the VME interface, seamless interaction via transaction issuance 

is facilitated between smart contract execution groups issuing standard transactions. 

Each smart contract execution group within Locus Chain is an entirely independent entity and 

primarily interacts only through transactions on the Locus Chain ledger. Hence, each group can possess 

different functionalities and characteristics. For example, each group can execute different smart 

contract languages. Groups are considered as virtual machines (VMs) for smart contracts, and each VM 

can run any language environment that satisfies the Locus Chain VME interface. Execution information 
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of VMs is shared only among nodes participating in the respective group, allowing nodes to flexibly 

participate in desired smart contract execution groups by plugging in VMs suitable for their execution 

capabilities and purposes. 

Currently, Locus Chain primarily employs an EVM engine compatible with Ethereum at the language 

level and is considering additional implementations of various engines with different characteristics, 

such as the Move language VM and WASM-based VM engine. Since the VME engine supports ledger 

and network-level services universally, it can also serve as an experimental basis for third parties to 

develop new language VMs. 

 

Figure 9: Locus Chain VME Structure 

 

(5) External System Integration via VME's "Plug-in" Extension Structure 

From an everyday user's standpoint, the smart contract execution mechanism might seem like a 

black box. What's crucial for users is simply that upon sending a request to a smart contract account 

address, the smart contract executes, and they receive the outcome. Consequently, the design of the 

smart contract engine itself can be adaptable as needed. Furthermore, by linking the smart contract VM 

with external data sources, it becomes possible to generate results that interact with the real world. 

To integrate external information, it's essential that all nodes participating in the smart contract 
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execution group have access to a shared external data source (an oracle) for reference. Each execution 

node should then be able to access the same external information through this oracle. Meeting these 

requirements isn't overly complex in today's web service APIs. Therefore, implementing, and operating 

smart contract programs directly connected to external API systems on Locus Chain is viable. 

As an illustrative example, consider a smart contract agreement that autonomously determines 

transaction directions by integrating with reliable foreign exchange rate records. Alternatively, systems 

could be developed to exchange information between blockchains by referencing transactions issued by 

other publicly verifiable blockchain systems. 

Furthermore, systems could interact with specific services, such as games, by leveraging APIs 

provided by these services. This would allow Locus Chain accounts to assess resources within the game 

service and interact accordingly. Conversely, new services could utilize existing smart contracts on 

Locus Chain by issuing transactions on the network. 

(6) Locus Chain Corescript 

The VME structure of Locus Chain operates under the premise that only nodes with sufficient 

hardware resources to execute Turing-complete computer languages will selectively participate. 

However, running a simplified script language for basic transaction-level processing is feasible even on 

low-performance devices. A prime example is the stack-based script system used in Bitcoin. 

Similarly, Locus Chain features a simple script system known as Corescript, enabling basic 

transaction-related processing. Corescript commands consist of bytecode scripts with limited length 

and restricted instructions, included within each transaction. All nodes are obligated to execute this 

Corescript during transaction processing. 

While Corescript alone cannot execute advanced processing such as transaction issuance, it can 

handle simple condition evaluation tasks, such as determining the application conditions of issued 

transactions. For instance, commonly referred to tasks like atomic swaps can be implemented using 

Corescript alone.  
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9. Cryptographic Keys 

(1) Locus Chain’s Cryptographic Key Hierarchy 

Similar to many other blockchain platforms, each account of Locus Chain is related to a pair of public 

and secret key supplied by a user. Generally, users must securely manage their secret key. 

In Locus Chain, there are three kinds of cryptographic keys related to an account. There is a master 

key, a normal key, and a validation key. 

A validation key is utilized by each node for round consensuses and similar operations. A validation 

key is automatically generated from the normal key. The validation key is supposed to be re-generated 

frequently. 

A normal key is a key for general-purpose operations such as transaction signing. A normal key 

should be delivered by an algorithm balanced between cryptographic strength and ease of use. Currently, 

Locus Chain generates normal keys with an elliptic function cryptography algorithm. 

A master key is a key for generating a normal key. A master key should be generated with a strong, 

computing-intensive algorithm usually not suitable for real-time operation. The algorithms for master 

keys are not finalized but working on both post-quantum cryptography systems and elliptic-function 

cryptography systems. 

If a normal key becomes inappropriate for some reason, the user can discard the key and register a 

new key by issuing a key-exchange transaction with a new normal key generated by using the user’s 

master key. The new normal key becomes valid for the next round of the consensus process which settles 

the key-exchange transaction. 

Furthermore, Locus Chain is working on an approach for adding and changing algorithms for 

normal keys. We hope this approach could be a future-proof facility for the post-quantum computing 

era. 

 

(2) Quantum-resistant Cryptographic Signatures 

One of the biggest threats to blockchains is the emerging threat of quantum computers. There is a 

possibility that quantum computers may break many currently used signature algorithms. 

Yet, there are also researches regarding Post-Quantum Cryptographies (PQC) that are secure 

against quantum computers. However, current PQC are infeasible for personal computers and mobile 

devices because they require immense amount of computation and data compared to traditional 
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algorithms. Also, there are no matured standards for PQCs yet, and it is hard to tell the precise property 

of PQC algorithms in actual use due to the lack of scientific and technological establishments. 

To overcome this situation, Locus Chain incorporates a layered key system composed of two 

cryptographic keys, a master key and a normal key, of different strengths. A user uses the normal key, 

which depends on a current-generation cryptography system, for signing transactions. If the user’s 

normal key is compromised, then PQC-applied master key is used to re-generate and change the broken 

normal key. 

The algorithm for master keys can consume significant computing resources for PQC computation 

since master keys are only used in exceptional situations. Also, Locus Chain is working on a built-in 

mechanism to add additional signature algorithms. In the future, Locus Chain will be able to exchange 

the normal key algorithm itself with a Post-Quantum algorithm once PQC algorithms become widely 

available. Moreover, Locus Chain may use a hybrid of PQC and current-generation cryptographies for 

a while since the property of PQC is not yet completely understood. Even when vulnerabilities of PQC 

signature algorithms are found, Locus Chain can make use of current-generation algorithms to quickly, 

temporarily cover the vulnerabilities. 
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10. Economic Structure (Rewards, Coins, Grants) 

(1) Rewards for Locus Chain Participants 

The voluntary engagement of accounts and nodes within the Locus Chain system is paramount for 

its seamless operation. Similar to conventional blockchain ecosystems, Locus Chain incorporates the 

Coin and Grant concepts to incentivize active participation among nodes and accounts. While the 

system accommodates a broad spectrum of data types, Coins and Grants serve as specialized data units 

symbolizing value within the system and are integral to its optimal functionality. 

(2) Coins and Grants 

In the Locus Chain ecosystem, Coins function as numerical representations of general value metrics. 

They are transferrable between accounts, with each account receiving an initial Coin allocation upon 

creation. Essentially, the first transaction constituting the first block for each account, except those 

generated during the genesis round, involves receiving Coins. 

Grants, on the other hand, represent internal system values critical for Locus Chain's operational 

functions. For instance, transaction creation necessitates a Grant payment, with additional Grants 

necessary for transactions involving services like smart contracts. In cases of insufficient Grant, Coin 

can be consumed or "burned" as an alternative. 

The quantities of Coins and Grants are publicly accessible data, allowing any participant to 

determine the amounts associated with each account based on transaction history. 

(3) Coin Stake 

Coins play a vital role in determining stake amounts within the Locus Chain system. In the process 

of probabilistically electing the Committee members from the nodes for each round's consensus in each 

shard, nodes with higher stake amounts are more likely to be selected. This design, with a Delegated 

Proof of Stake (DPoS)1 structure, ensures that nodes with relatively larger stakes contribute more 

significantly to operation and maintenance of the system. 

Accounts within the Locus Chain have the option to delegate their stake to other accounts. This 

feature allows accounts that are not always connected to the network to effectively utilize their stakes. 

                                           
1 The Delegated Proof of Stake (dPoS) used in EOS and the Delegated Proof of Stake (DPoS) used in Locus Chain are not 

the same concept. In EOS, the number of nodes eligible to participate in consensus and receive rewards is limited to 21, 

meaning that even if a regular account holds coins, it cannot participate in consensus. Instead, it must delegate its stake to 

one of the pre-selected 21 nodes. However, Locus Chain fundamentally differs from EOS as it does not restrict node 

participation. 
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The stake of a node comprises the sum of the stake held by the node's host account and the stake 

delegated from other accounts. 

 

(4) Epoch: Incentive Calculation Unit 

Coins serve as incentives (rewards) for nodes and accounts contributing to operating and 

maintaining the Locus Chain. These coin incentives are calculated based on a predetermined formula 

using the historical records of nodes' contributions to consensus rounds. Consequently, any node 

calculating the distribution of incentives would arrive at the same result. 

Transactions are confirmed and finalized on a per-round basis. To streamline the process, incentive 

calculation aggregates rounds over a specific period in the past. Presently, the Locus Chain computes 

‘daily rewards’ by consolidating rounds over a 24-hour span into an ‘Epoch,’ marking the round when 

the incentive calculation occurs. In other words, the distribution of incentives occurs on an epoch basis. 

The round chosen as the reference for epoch calculation is termed the Epoch Pivot Round. In rounds 

requiring epoch calculation, each shard utilizes ledger information from the Epoch Pivot Round to 

compute crucial parameters such as the reference stake amount and the number of reference nodes 

used in the incentive calculation and consensus algorithm. Following the completion of these 

calculations, from the subsequent round onwards (Epoch Transition Round), all nodes within the shard 

apply the computed reference stake amount until it is updated in the next epoch. 

 

 

Figure 10: Epoch Pivot Round, Epoch Calculation Round, and Epoch Transition Round 

The calculated values of incentives, etc., at the Epoch Pivot Round are recorded on the ledger 

alongside other transactions of that round through consensus execution. Subsequently, starting from 

the round immediately after the ledger entry (Epoch Transition Round), shards employ the newly 

computed information in the consensus algorithm for each round. 

Each eligible account receives coins as incentives by issuing transactions for receiving rewards based 

on the results of epoch calculation. 

Unlike coins, grants are automatically calculated and distributed at regular round intervals to 

accounts participating in consensus and those delegating authority to participate. However, there are 
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respective upper limits for these two scenarios to prevent grants from accumulating beyond specified 

thresholds. 

(5) Coins as Incentives 

Coins allocated as incentives for mining are distributed across accounts in proportion to their 

respective contributions to the Locus Chain, on an epoch-by-epoch basis. 

To encourage the activation of the Locus Chain platform in the early stages, nodes that participate 

initially are granted relatively more coins to acknowledge their higher contributions. As epochs progress, 

the incentives paid in Locus Coins from the pre-issued reserves are designed to gradually decrease.  

The magnitude of epoch-level incentives is impacted by fluctuations in the reserve of Locus Coins, 

which are replenished through fees paid in coins. 

In order to mitigate any potential disadvantages in stake allocation for new participants relative to 

long-term participants actively engaged in the Locus Chain consensus process, the correlation between 

stake amount and coin holdings is intentionally modified to deviate from strict proportionality. 

(6) Grants 

Grants serve as internal resource units necessary for transaction issuance. They cannot be 

transferred and have an upper limit, preventing accumulation beyond this threshold. There are two 

methods to acquire grants. The host account of a node participating in the consensus receives grants 

periodically based on its contribution to the consensus over specific intervals. The host account cannot 

exceed the periodic limit of grants. Guest accounts, which do not partake in the consensus and delegate 

stake to host accounts, receive a predetermined quantity of free grants periodically. 

Grants facilitate small transactions without coin expenditure, enabling microtransactions. 

Furthermore, their limited allocation prevents excessive simultaneous transaction issuance. When 

grants are insufficient, transactions must be initiated by spending coins. 
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11. Tokenomics Design 

(1) Token 

The Locus Tokens currently in circulation are ERC20 tokens based on Ethereum, issued by Locus 

Chain Foundation headquartered in Singapore. However, direct utilization of existing Ethereum 

network-based tokens on Locus Chain is not feasible. Plans are in place to perform an Atomic Swap of 

the existing tokens to Locus Chain-based coins at a 1:1 ratio when the Locus Chain core engine is fully 

deployed. As the Locus Chain core engine initiates comprehensive business support, a transition to a 

new coin system will take place to secure the liquidity necessary for expanding the Locus Chain platform 

ecosystem. Locus Chain Foundation will actively support the transition of Locus Tokens to new Locus 

Coins with a designated grace period for the completion of the swap. 

 

<Figure 11> Atomic Swap (Locus Chain <> Ethereum Mainnet) 

 

(2) Token Economics 

The design of Locus Chain's token distribution and economic incentive structure places the primary 

focus on enhancing the efficiency of mechanisms that incentivize sustainability of the Locus Chain 

ecosystem's value and encourage the voluntary participation of platform components. In designing 

these mechanisms, three core concepts served as the foundation: 

  Stability of Value and Security 

  Validity of Incentive-Based Contributions to Ecosystem Establishment and Growth 

  Decentralization through Distributed Ownership and Decision-Making Structures 

Locus Chain has adopted a Delegated Proof of Stake (DPoS) mechanism based on the Byzantine 

Fault Tolerance (BFT) consensus system, which is highly efficient in meeting these three criteria. 

A notable aspect of Locus Chain's DPoS system is that voter selection is autonomously determined 

among participating nodes within the network, rather than pre-decided at the network's inception. This 

autonomy extends to individuals able to become nodes by downloading the ledger and fulfilling voter 
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participation criteria, thereby qualifying as voters with a specific stake level in the network following 

current design standards.  

This model allows participation in node activities even on low-spec desktop PCs connected to the 

internet in the background. Participants can become nodes mining Locus Coins as long as they meet 

stake requirements and internet connectivity criteria, regardless of hardware specifications or hashing 

power.  

When an account delegates its stake, it is classified as a "Guest Account." While Guest Accounts do 

not mine coins or maintain ledgers, they can trade through nodes to which they delegate their stake. 

This model provides a system participation method for coin holders who do not wish to participate as 

nodes.  

Locus Chain's DPoS features low barriers to mining Locus Coins, making it accessible for all without 

participation inequalities based on equipment performance. The system only allows programming rules 

that prevent errors or Byzantine failures (malicious hacking attempts), maintaining a high degree of 

decentralization and disallowing other forms of artificial interference in the system.  

The general advantages of Locus Chain's incentive mechanism include rapid processing speeds and 

avoiding unnecessary energy consumption in ledger creation. Moreover, it is highly effective in 

acquiring resources for ensuring stable and continuous growth of the platform, a challenge faced by new 

blockchain platform operators during the early stages of operation. This mechanism enables the 

introduction of reasonable mechanisms to consider compensation for risks and opportunity costs 

associated with participation from the platform design phase to early activation stages. It also facilitates 

rewarding participants based on their varied contributions. Rather than solely focusing on the monetary 

value at stake, it sends a message of appreciation towards those who endured risks associated with 

building a new platform and fairly rewarded early participants who enabled the development and 

growth of our platform. 

(3) Token Allocation 

A total of 7 billion Locus Tokens have been pre-mined, and the entire token supply will be distributed 

through Private Sales rather than public participation.  

All foundational assets are owned by Locus Chain Foundation and are allocated solely for business 

benefits. Tokens for advisors and partner companies will be mostly locked up for 6 to 24 months.  

Aside from the 7 billion Locus Tokens, there will be no additional issuance beyond the mining 

rewards following the launch of the mainnet. The transition of Locus Tokens to Locus Coins will be 

scheduled to undergo a process and will be fully swapped to Locus Coins through Atomic Swap. 
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Distribution Token Quantity Percentage Explanation 

Foundation Reserved 1,200,000,000 17% Tokens held by Locus Chain 
to leverage better strategic 
benefits 

Founders & Team 600,000,000 9% 2 year lock-up 

Advisors & Partners 1,200,000,000 17% 6 ~ 24 month lock-up 

Contributor 4,000,000,000 57%  

TOTAL 7,000,000,000 100%  

Figure 12. Token Distribution Quantity 

The mining of Locus Coins will commence alongside the official operation of the core engine-based 

platform, and the maximum amount of minable coins is set at 5 billion. Coins paid as mining fees are 

stored in the Locus Coin reserve. According to current mining mechanisms, an additional 5 billion Locus 

Coins will be mined over 50 years. This caps the total supply of Locus Coins at 12 billion.  

Notably, transaction fees in Locus Chain are reclaimed to the Locus Coin reserve for mining rewards. 

The reclaimed coins will affect the coin reserve from which future mining rewards are determined. 

While the initial mining period is set at 50 years, as transaction fees are reclaimed to the Locus Coin 

reserve, leading to an increase in coin holdings in the reserve proportional to the continued increase in 

mineable duration. Thus, the mining period theoretically has the potential to extend indefinitely with a 

capped total supply of 12 billion coins. 

 

Figure 13. Locus Token Allocation 
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(4) Utilization of Token Sale Proceeds 

The proceeds from the token sales to Contributors will be allocated towards the planning, 

development, marketing, and promotion of Locus Chain, as well as the cultivation of its ecosystem. 

Since blockchain technology development is essential for project success, 50% of the funds will be 

dedicated to aspects related to blockchain technology development. The remaining 20% will support 

the Locus Chain ecosystem, aid various ecosystem participants, and cover ecosystem development costs. 

Additionally, 15% will be directed towards Locus Chain's marketing and promotional activities, while 

10% will cover project operational expenses. The final 5% will be set aside as contingency reserves. 

 

 

Figure 14. Utilization of Funds Raised 

(5) Governance 

Locus Chain has devised the following governance operational plan. According to policies outlined 

in the DPoS process, voting rights are granted based on the quantity of coins held by each node. 

Delegating holdings from a guest account to a host account also delegates the voting rights. Detailed 

procedures concerning policy proposals, modifications, and voting protocols will be facilitated through 

the foundation's official wallet. More comprehensive information on initiatives, constraints, voting 

processes, execution, and penalties will be disclosed in upcoming announcements. 
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12. Applications of Locus Chain Technology 
Locus Chain technology enables the swift processing of large transaction volumes on PCs and IoT 

devices, facilitated by innovations like dynamic sharding and verifiable pruning. This advancement has 

opened avenues for Locus Chain to address the limitations previously associated with existing 

blockchains, particularly in real-time information exchange and storage systems. 

Locus Chain has transcended theoretical realms and is now actively integrated into various 

applications. As of the publication of the whitepaper, it powers products like "Locus Game Chain," a 

serverless online gaming platform, and "Locus Web Meeting," a serverless remote conferencing system. 

Furthermore, ongoing development is underway for other online game products, metaverse worlds, 

real-time trading platforms, and similar purposes. 

Below, we will examine the currently publicly available applications of Locus Chain technology. 

 

A. Locus Game Chain 

(1) Limitations of Traditional Game Server Systems 

Constraints of Centralized Server-based Games 

The typical setup for network game services involves game client programs running on devices 

like PCs or mobile phones, which connect to centralized server systems managed by game service 

companies. Players' game client programs establish connections to these centralized server systems via 

the internet, where communication occurs, and player game data is stored and processed. 

Within such centralized server systems, all storage and processing of game information are 

concentrated. Consequently, as user numbers grow, there arises a need for high-performance central 

server systems to handle the load. Conversely, a decline in user numbers can lead to reduced revenue 

due to the high operating costs associated with maintaining centralized server systems, potentially 

resulting in premature service termination. 

Challenges of Peer-to-Peer (P2P) Communication 

As an alternative approach to running game services without centralized server systems, some utilize 

Peer-to-Peer (P2P) communication technology. A peer is a computer that is connected to the internet. 

Instead of connecting to a central server, computers running the game program connect directly to each 

other for communication and game progression. 

However, P2P communication has clear limitations. While it reduces the communication burden on 

central servers and the workload for game progression to some extent, it lacks a central oversight system 
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for monitoring misconduct. This absence of supervision can make it easier for malicious players to 

engage in misconduct, such as manipulating game information by connecting directly to each other. 

Similarly, due to the challenge of trusting the game save results of other players, there remains a need 

for a central server to verify and securely store game progression details. 

(2) Locus Game Chain 

Locus Game Chain represents a decentralized gaming service system that transcends the constraints 

of conventional centralized server technology and P2P methods. It achieves this by leveraging the 

distributed ledger system inherent in Locus Chain. 

Locus Game Chain is a distributed server application tailored for Windows, built upon Locus Chain 

technology. By interfacing with Locus Game Chain, game client programs gain access to services akin 

to those provided by traditional centralized game servers. These include functionalities such as data 

management resembling that of centralized servers, communication with fellow players, and exchange 

of information among nodes. 

“Serverless” Network Game System 

The distributed ledger system of Locus Chain enables the storage of verifiable and consistent 

information in a distributed computing environment. In essence, it ensures the secure storage of 

players' game progress information in a stable and auditable manner, even in the absence of a central 

server. 

The capability to store information in a distributed environment (known as distributed database 

functionality) is a fundamental aspect of blockchain technology. Through the process of block creation, 

verified information becomes recognized as accurate, facilitating the sharing of precise data that can be 

verified by anyone within the distributed network. This characteristic theoretically allows almost all 

blockchain systems to operate as distributed databases. However, traditional blockchain systems 

encounter limitations, such as a transaction throughput of approximately 20 transactions per second, 

making them unsuitable for programs with a large number of concurrent users, such as gaming 

applications. 

Locus Game Chain addresses this challenge by leveraging Locus Chain's dynamic sharding 

technology, enabling large-scale information processing and storage. Players participating in the game 

become nodes within the Locus Game Chain network. As the player count increases, so does the number 

of nodes in the Locus Game Chain network. With dynamic sharding technology applied to the expanding 

node count, the number of shards in Locus Chain automatically increases. Locus Chain's transaction 

processing capacity scales proportionally with the number of shards, thereby accommodating the 

increased volume of stored information. Consequently, in Locus Chain with dynamic sharding 

technology, as the player count rises, the information processing capacity naturally expands in tandem. 
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Furthermore, Locus Chain's verifiable pruning technology ensures that players only manage 

the essential minimum of game information. The game client held by a player temporarily retains data 

solely from surrounding clients engaged in real-time gameplay, discarding any redundant information 

through pruning. Even if a player's opponent changes during the game, the necessary game data is 

automatically exchanged between the new opponents to facilitate uninterrupted gameplay. With 

verifiable pruning technology, the received information's legitimacy from opponents can be verified, 

effectively deterring misconduct. 

In essence, Locus Game Chain is a program that leverages Locus Chain technology to implement 

server-less network games without relying on a central server. 

Presently, Locust Game Chain has been integrated into the real-time strategy simulation game 

"Kingdom Under Fire" and is available to the public on the renowned gaming platform "Steam." 

 

B. Locus Web Meeting 

(1) Locus Web Meeting: A Web Conferencing System without a Central 

Server 

The information storage and exchange capabilities provided by Locus Game Chain extend beyond 

gaming to other network applications. Locus Web Meeting stands out as a prime example, leveraging 

Locus Chain's information exchange abilities within a web application. 

Functioning entirely within a web browser, Locus Web Meeting offers a video conferencing solution. 

Traditional video conferencing systems typically involve creating virtual meeting rooms, with users 

joining via URLs or similar means. In Locus Web Meeting, Locus Chain technology is applied to manage 

both virtual meeting room information and user data. Details of created virtual meeting rooms are 

securely recorded on the blockchain, enabling participants to directly verify the room's status and 

seamlessly join the meeting. 

 

(2) Security Advantages of Locus Web Meeting 

Locus Web Meeting offers several security advantages for recorded meeting information. 

Utilizing Locus Chain technology, Locus Web Meeting conducts video conferencing through direct 

communication, eliminating the need for a central server. Communication records are exchanged solely 

between participants' computers, with no data stored elsewhere. This approach mitigates risks 

associated with eavesdropping and data breaches at the program level. 
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Information concerning virtual meeting rooms is recorded on the blockchain in Locus Web Meeting. 

However, due to Locus Chain's verifiable pruning, blockchain-recorded information leaves minimal 

traces on the internet. Verifiable pruning ensures that Locus Chain nodes only retain necessary 

information, reducing the chance of meeting data persisting on nodes not directly involved in the 

meeting. 

Meeting room information can be encrypted to allow access only to participants, rendering it 

inaccessible to third parties. Participants are identified solely by their Locus Chain account addresses, 

with no details such as nicknames stored. Additionally, meta-information like IP addresses is not stored 

on the blockchain. Verifiable pruning also allows participants to objectively validate details such as 

meeting creation time and participant involvement. 

As a secondary advantage, Locus Web Meeting facilitates high-quality video and audio 

communication among participants without the need for server communication overhead, ensuring 

smooth and high-resolution meetings. 

By directly applying the security and safety of distributed ledger systems to web conferencing soluti

ons, Locus Web Meeting demonstrates the scalability of Locus Chain. As of the whitepaper publication

 date, the Locus Web Meeting is currently being prepared for trial service by the development team.
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13. Closing Remarks  
Locus Chain is an innovative blockchain platform to resolve performance and scalability issues 

without sacrificing the value of decentralization. Locus Chain is a high-speed, high-capacity blockchain 

system for diverging users on many kinds of hardware devices. 

In this document, we described technical aspects that support the exceptional performance of the 

Locus Chain system. 

Locus Chain adopted a nonlinear DAG structure to introduce parallelism and flexibility to the ledger. 

Locus Chain's Account Wise Transaction Chain (AWTC) structure is a parallel DAG data structure that 

describes relations between transactions. AWTC's multiple endpoints enable simultaneous high-speed 

referencing and processing of transactions, essential for Locus Chain's ultimate performance. AWTC's 

parallel nature makes ledger sharding a reality. 

Locus Chain's consensus algorithm combines a Proof-of-Stake (PoS) based Byzantine Fault 

Tolerance (BFT) consensus with transaction-level competitive consensus, which is invoked only when 

necessary. This approach aims to address the inefficiencies and uncertainties associated with Nakamoto 

consensus, which relies on Proof-of-Work (PoW) and consumes significant CPU resources. To enhance 

the speed of BFT consensus, Locus Chain employs a fair probabilistic sampling method to select nodes 

participating in consensus from the entire network. This selection process considers various 

contributions of each node to the Locus Chain network, with coin ownership being a primary metric 

through PoS, supplemented by factors such as node uptime, ensuring a comprehensive consensus 

selection process. 

Locus Chain resolves several resource issues using Dynamic Sharding. Sharding reduces each node's 

data processing load by dividing ledgers. Sharding also reduces network communication load by 

localizing communications. Each shard independently executes the BFT consensus algorithm, and the 

total transaction throughput is multiplied by the number of shards. Locus Chain ensures fairness 

between shards by dynamically adjusting the number of nodes of shards in semi-realtime. 

Verifiable Pruning is the key technology to the storage space problem. Verifiable Pruning drastically 

reduces each node's storage space requirement while keeping ledger integrity. Locus Chain could fully 

operate on devices with limited storage capacity like IoT devices. 
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Annex 1. Locus Chain’s Domestic Patent Application and 

Registration Status 
 

As of the whitepaper update on May 6, 2024, Locus Chain has submitted a total of 10 patent 

applications domestically, with 4 patents registered and 6 patents under review. 

 

A. Registered (4) and International Patent Applications (2) 

1. DAG-AWTC Ledger System with BFT Deterministic Consensus Method (August 1, 2019) 

2. Verifiable Pruning System for Ledgers (August 1, 2019) 

3. Inter-shard Transaction System and Method in Blockchain Networks (June 3, 2022) 

4. System and Method for Changing a Working Shard of an Account in a Blockchain Network (June 

14, 2022) 

B. Under Review (6) 

1. Verifiable Inter-shard Transaction System and Method in Blockchain Networks (July 12, 2022) 

2. Dynamic Sharding System and Method in Blockchain Networks (August 17, 2022) 

3. Blockchain Consensus System and Method (September 13, 2022) 

4. System and Method for Changing Account Directory in Blockchain Networks (September 22, 2022) 

5. System and Method for Account Creation in Blockchain Networks (October 25, 2022) 

6. Node Distribution System and Method in Blockchain Networks (November 3, 2022) 
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Annex 2: Locus Chain's Overseas Patent Application and 

Registration Status 
 

As of the whitepaper update on May 6, 2024, among the 2 patents applied for in 7 countries, 

6 patents have been registered in 4 countries, and 8 patents are under review. 

 

A. United States 

1. DAG-AWTC Ledger System with BFT Deterministic Consensus Method (Patent Entry Date: January 

19, 2022) 

2. Verifiable Pruning System for Ledgers (Patent Entry Date: January 14, 2022, Registration Date: 

April 2, 2024) 

B. Japan 

1. DAG-AWTC Ledger System with BFT Deterministic Consensus Method (Patent Entry: January 18, 

2022, Registration: June 27, 2023) 

2. Verifiable Pruning System for Ledgers (Patent Entry: January 18, 2022, Registration: June 2, 2023) 

C. Russia 

1. DAG-AWTC Ledger System with BFT Deterministic Consensus Method (Patent Entry: February 2, 

2022, Registration: December 14, 2023) 

2. Verifiable Pruning System for Ledgers (Patent Entry: February 2, 2022, Registration: February 15, 

2023) 

D.  Australia 

1. DAG-AWTC Ledger System with BFT Deterministic Consensus Method (Patent Entry: January 21, 

2022) 

2. Verifiable Pruning System for Ledgers (Patent Entry: January 21, 2022, Registration: December 14, 

2023) 

E.  Europe 

1. DAG-AWTC Ledger System with BFT Deterministic Consensus Method (Patent Entry: December 

29, 2021) 

2. Verifiable Pruning System for Ledgers (Patent Entry: December 29, 2021) 

F.  Canada 
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1. DAG-AWTC Ledger System with BFT Deterministic Consensus Method (Patent Entry: January 6, 

2022) 

2. Verifiable Pruning System for Ledgers (Patent Entry: January 5, 2022) 

G.  China 

1. DAG-AWTC Ledger System with BFT Deterministic Consensus Method (Patent Entry: January 21, 

2022) 

2. Verifiable Pruning System for Ledgers (Patent Entry: January 21, 2022) 
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